Machine learning concepts: neural networks

Pranav Rane

Neural Networks

• Modeled after biology...

FCNN

@ MAYO FOUNDATION FOR MEDICAL EQUICATION AND RESEARCH, ALL INSHITS RESERVED

Neural Networks

- Can learn <u>ANY</u> function regardless number of inputs/outputs
- Modeled after biology...

FCNN

f(x) & weights

Weights are learned through "Back propagation"

Prediction: softmax activation

FCNN

FCNN Overview

FCNN

- 1. Choose architecture and activation functions
- 2. Randomly initialize weights
- 3. Input training example
- 4. Forward propagate to reach output layer
- 5. Compare with training example label, then backpropagate + update weights

Overview

- 1. Choose architecture and activation functions
- 2. Randomly initialize weights
- 3. Input training example
- 4. Forward propagate to reach output layer
- 5. Compare with training example label, then backpropagate + update weights

- How?
- High model complexity → overfitting

FCNN

• Trial and error

Convolutional Neural Network

Goal: Understand image data

Architecture: Similar concept, but emphasize spatial position of data

The meat: convolutional layer

Main convolutional layer parameters:

- 1. Filter size (3x3,5x5, etc.) adjusts size of receptive field
- 2. Number of filters (8, 16, 32, etc.) adjusts model complexity
- 3. Activation function (ReLU) for nonlinearity

The meat: convolutional layer

Main convolutional layer parameters:

CNN

- 1. Filter size (3x3,5x5, etc.) adjusts size of receptive field
- 2. Number of filters (8, 16, 32, etc.) adjusts model complexity
- 3. Activation function (ReLU) for nonlinearity

Important concept

Applying multiple convolution layers one after another allows hierarchical learning of more complex patterns/features in the image (ex. edges→ triangles→bird beak)

Max Pooling Layer

- Not super important but it appears in almost every diagram of a CNN
- Reduce dimensionality + keep important features after convolution

Main pooling layer parameters:

- 1. Filter size (2x2, 4x4, etc)
- 2. Stride (1,2,etc.)

CNN

CNN Overview

Semantic vs. Instance segmentation

Semantic segmentation (SS) is pixel classification SS state of the art uses U-net architecture (2015) that features an encoder/decoder

UNet architecture

Semantic vs. Instance segmentation

Semantic segmentation (SS) is pixel classification SS state of the art uses U-net architecture (2015) that features an encoder/decoder Instance segmentation is pixel classification + distinguishing different instances

semantic

instance

• Want to identify *individual* blisters accurately (instance segmentation)

StarDist

- Want to identify *individual* blisters accurately (instance segmentation)
- Developed to provide better instance segmentation in biological images

StarDist

- Want to identify *individual* blisters accurately (instance segmentation)
- Developed to provide better instance segmentation in biological images
- Great for segmenting star-convex polygons

StarDist

- Want to identify *individual* blisters accurately (instance segmentation)
- Developed to provide better instance segmentation in biological images
- Great for segmenting star-convex polygons ٠
- Modified U-net architecture to predict cell centroids & radial components

StarDist

 $d_{i,j}$

- Want to identify *individual* blisters accurately (instance segmentation)
- Developed to provide better instance segmentation in biological images
- Great for segmenting star-convex polygons
- Modified U-net architecture to predict cell centroids & radial components
- Thus, produces coordinate data for each blister

Name	∧ Date Modified	Size	Kind
0026-0062.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0049-0224.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0077-0128.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0110-0249.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0114-0217.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0121-0159.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0160-0111.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0165-0014.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0185-0010.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0198-0146.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document
0247-0074.roi	Jul 17, 2024 at 11:20 AM	530 bytes	Document

11 blisters \rightarrow 11 sets of coordinates